Orthogonality to matrix subspaces, and a distance formula
نویسندگان
چکیده
منابع مشابه
On the distance from a matrix polynomial to matrix polynomials with two prescribed eigenvalues
Consider an n × <span style="fon...
متن کاملA Haar wavelets approach to Stirling's formula
This paper presents a proof of Stirling's formula using Haar wavelets and some properties of Hilbert space, such as Parseval's identity. The present paper shows a connection between Haar wavelets and certain sequences.
متن کاملon the distance from a matrix polynomial to matrix polynomials with two prescribed eigenvalues
consider an n × n matrix polynomial p(λ). a spectral norm distance from p(λ) to the set of n × n matrix polynomials that havea given scalar µ ∈ c as a multiple eigenvalue was introducedand obtained by papathanasiou and psarrakos. they computedlower and upper bounds for this distance, constructing an associated perturbation of p(λ). in this paper, we extend this resultto the case of two given di...
متن کاملMatrix Subspaces of L 1 ∗
If E = {ei} and F = {fi} are two 1-unconditional basic sequences in L1 with E r-concave and F p-convex, for some 1 ≤ r < p ≤ 2, then the space of matrices {ai,j} with norm ∥{ai,j}∥E(F ) = ∥∥∑ k ∥ ∑ l ak,lfl∥ek ∥∥ embeds into L1. This generalizes a recent result of Prochno and Schütt.
متن کاملNonnegative Matrix Factorization with Orthogonality Constraints
Nonnegative matrix factorization (NMF) is a popular method for multivariate analysis of nonnegative data, the goal of which is to decompose a data matrix into a product of two factor matrices with all entries in factor matrices restricted to be nonnegative. NMF was shown to be useful in a task of clustering (especially document clustering), but in some cases NMF produces the results inappropria...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2014
ISSN: 0024-3795
DOI: 10.1016/j.laa.2013.11.040